Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Problems Plus - Page 363: 18

Answer

$$ \lim _{x \rightarrow \infty} \left(\frac{x+a}{x-a}\right)^{x}=e $$ This equation is true when $ a=\frac{1}{2}$.

Work Step by Step

$$ \lim _{x \rightarrow \infty} \left(\frac{x+a}{x-a}\right)^{x}=e $$ Let $$ L =\lim _{x \rightarrow \infty} \left(\frac{x+a}{x-a}\right)^{x} $$ then $$ \begin{aligned} \ln L &=\lim _{x \rightarrow \infty} \ln \left(\frac{x+a}{x-a}\right)^{x} \\ &=\lim _{x \rightarrow \infty} x \ln \left(\frac{x+a}{x-a}\right)\\ &=\lim _{x \rightarrow \infty} \frac{\ln (x+a)-\ln (x-a)}{1 / x} \\ & \quad\quad\quad\left[ \text { we can use L'Hospital's } \right] \\ &= \lim _{x \rightarrow \infty} \frac{\frac{1}{x+a}-\frac{1}{x-a}}{-1 / x^{2}} \\ &=\lim _{x \rightarrow \infty}\left[\frac{(x-a)-(x+a)}{(x+a)(x-a)} \cdot \frac{-x^{2}}{1}\right] \\ &=\lim _{x \rightarrow \infty} \frac{2 a x^{2}}{x^{2}-a^{2}}\\ &=\lim _{x \rightarrow \infty} \frac{2 a}{1-a^{2} / x^{2}} \\ &=2 a \end{aligned} $$ Hence, $$ \ln L =2a, $$ so $$ L =e^{2a} $$ From the original equation, we want $$ L =e^{1} $$ $ \Rightarrow $ $$ 2a=1 \Rightarrow a=\frac{1}{2} $$ So, we obtain that the original equation is true when $ a=\frac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.