Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 217: 74

Answer

a) $(1,-1)$ b)
1556506947

Work Step by Step

a) $x^2-xy+y^2=3\\ 2x-(xy'+y)+2yy'=0\\ 2x-xy'-y+2yy'=0\\ y'(2y-x)=y-2x\\ y'=\frac{y-2x}{2y-x}$ Plug in $(-1,1)$ into $y′$ to find the gradient $y'=\frac{(1)-2(-1)}{2(1)-(-1)}\\ y'=1$ To find the normal at some point we use the formula $y'\times m_{normal}=-1$ $1\times m_{normal}=-1\\ m_{normal}=1$ Then we find the equation of the normal $y-1=-1(x-(-1))\\ y=-x$ Then we equate the normal line and the ellipse to find where they intersect. $x^2-(x(-x))+(-x)^2=3\\ 3x^2=3\\ x=1\Longrightarrow y=-1$ Therefore, the ellipse and the normal line intercept at $(1,-1)$ b)
Small 1556506947
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.