Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Section 3.10 - Linear Approximations and Differentials. - 3.9 Exercises - Page 257: 41

Answer

a) $dc=0$ b) $d(cu)=c.du$ c) $d(u +v)=du+dv$ d) $d(uv)=u.dv+v.du$ e) $d(\frac{u}{v})=\frac{{u\times}d(u)-d(v){\times}u}{v^2}$ f) $d(x^n)=n.x^{n-1}$

Work Step by Step

a) $dc=0$ Differentiate w.r.t. $x$ $=\frac{dc}{dx}dx$ $=0{dx}$ $dc=0$ b) $ d(cu) =c du$ $=\frac{d}{dx}(cu)dx$ $=c\frac{d}{dx}(u)dx$ $=c\frac{du}{1}(1)$ $=c(du)$ $d(cu)=c.du$ c) $d(u +v) =du + dv$ Taking L.H.S. $d(u +v)=?$ $=\frac{d}{dx}(u+v)dx$ $=\frac{d}{dx}(u)dx+\frac{d}{dx}(v)dx$ $=\frac{du}{dx}dx+\frac{dv}{dx}dx$ $d(u +v)=du+dv$ d) $d(uv) =vdu + udv$ Taking L.H.S. $d(uv)=?$ $=\frac{d}{dx}(uv)dx$ $=u\frac{d}{dx}(v)dx+v\frac{d}{dx}(u)dx$ $=u\frac{dv}{dx}dx+v\frac{du}{dx}dx$ $=udv(1)+vdu(1)$ $d(uv)=u.dv+v.du$ e) $d(\frac{u}{v})=\frac{v\frac{d}{dx}(u)-\frac{d}{dx}(v)(u)}{v^2}$ $=\frac{v\frac{d}{dx}(u)dx-\frac{d}{dx}(v)dx(u)}{v^2}$ $=\frac{{u\times}d(u)(1)-d(v)(1){\times}u}{v^2}$ $d(\frac{u}{v})=\frac{{u\times}d(u)-d(v){\times}u}{v^2}$ f) $d(x^n)=n.x^{n-1}dx$ Taking L.H.S. $d(x^n)=\frac{d}{dx}(x^n)dx$ $d(x^n)=n(x^{n-1})\frac{d}{dx}(x)$ $d(x^n)=n(x^{n-1})(1)$ $d(x^n)=n.x^{n-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.