Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.8 - The Derivative as a Function - 2.8 Exercises - Page 163: 41


$f$ is not differentiable at $x=0$ and $x=-4$

Work Step by Step

There are 3 cases at which a graph is not differentiable at a point: - There is a corner (a pointy shape) at a point in the graph (a pointy point cannot have any tangent lines there) - The graph is not continuous at that point (differentiable means continuous) - There is a vertical tangent line at that point in the graph (since $f'(x)=\infty$) In this graph, there are 2 points at which $f$ is not differentiable there: - At $x=-4$, the graph has a corner. So there is not tangent line there, $f$ is not differentiable. - At $x=0$, the graph is not continuous. Therefore, $f$ is not differentiable there.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.