Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.2 - The Limit of a Function - 2.2 Exercises - Page 94: 33


$\lim\limits_{x \to 1}\frac{2-x}{(x-1)^2}=\infty$

Work Step by Step

$\lim\limits_{x \to 1^+}\frac{2-x}{(x-1)^2}=\frac{1^-}{(0^+)^2}=\frac{1^-}{0^+}=\infty$ $\lim\limits_{x \to 1^-}\frac{2-x}{(x-1)^2}=\frac{1^+}{(0^-)^2}=\frac{1^-}{0^+}=\infty$ Limits from both sides are equal, so $\therefore \lim\limits_{x \to 1}\frac{2-x}{(x-1)^2}=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.