Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 17 - Section 17.2 - Nonhomogeneous Linear Equations - 17.2 Exercise - Page 1167: 7

Answer

$y = \frac{9}{10}e^x\cos{2x} -\frac{1}{20}e^x\sin{2x} + \frac{1}{5}\sin{x} + \frac{1}{10}\cos{x}$

Work Step by Step

$y'' - 2y' + 5y = \sin{x}$ First, solve the homogenous equation. This yields characteristic equation: $r^2 - 2r +5 = 0$ $ \therefore r = 1 \pm 2i $ $\implies y_c = c_1e^x\cos{2x} + c_2e^x\sin{2x}$ Next, solve non-homogenous equation using method of undetermined coefficients. $\text{Consider:}~~~ y_p = A\sin{x} + B\cos{x}$ $\implies y'_p = A\cos{x} - B\sin{x}$ $\implies y''_p = -A\sin{x} -B\cos{x}$ Now, solve LHS. $\begin {equation} \begin{array}{lcl} y'' - 2y' + 5y &= -A\sin{x}-B\cos{x}-2(A\cos{x}-B\sin{x})+5(A\sin{x}+B\cos{x}) &= -A\sin{x} -B\cos{x} -2A\cos{x} + 2B\sin{x} + 5A\sin{x} + 5B\cos{x} &= (2B+4A) \sin{x} + (4B-2A)\cos{x} \end{array} \end{equation} $ $\implies 2B +4A = 1, ~~~ 4B-2A = 0$ $\implies A = \frac{1}{5}, ~~B = \frac{1}{10}$ $\therefore y_p = \frac{1}{5} \sin{x} + \frac{1}{10} \cos{x}$ Final solution is given by: $y = y_p + y_c$ $\therefore y = c_1e^x\cos{2x} + c_2e^x\sin{2x} + \frac{1}{5}\sin{x} + \frac{1}{10}\cos{x}$ From the initial condition we find the constants $c_1$ and $c_2$: $c_1=\frac{9}{10}, c_2=-\frac{1}{20}$ The solution is: $y = \frac{9}{10}e^x\cos{2x} -\frac{1}{20}e^x\sin{2x} + \frac{1}{5}\sin{x} + \frac{1}{10}\cos{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.