Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.9 - The Divergence Theorem - 16.9 Exercise - Page 1145: 12

Answer

$-12 \pi$

Work Step by Step

The Divergence Theorem states that $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $S$ is a closed surface and $E$ is the region inside that surface. $div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}$ This implies that $div F=\dfrac{\partial (xy+2xz)}{\partial x}+\dfrac{\partial (x^2+y^2)}{\partial y}+\dfrac{\partial (xy-z^2)}{\partial z}$ $div F=(y+2z)+2y-2z=3y$ Now, we have $\iiint_E 3y dV=\int_{0}^{2 \pi}\int_0^{2} \int_{r \sin \theta-2}^{0} 3 r \sin \theta r dz dr d\theta$ $=-\int_{0}^{2 \pi} \int_0^{2} 3r^3 \sin^2 \theta-6r^2 \sin \theta dr d\theta$ $=-\int_{0}^{2 \pi} [\dfrac{3r^4 \sin^2 \theta}{4}-2r^3 \sin \theta]_0^2 d\theta$ $=-\int_{0}^{2 \pi} 12 \sin^2 \theta-16 \sin \theta d\theta$ $=-\int_{0}^{2 \pi} 12 (\dfrac{1-\cos 2 \theta}{2}) -16 \sin \theta d\theta$ $=-[6 \theta -3 \sin 2 \theta +16 \cos \theta]_0^{2\pi}$ $=-12 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.