Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.6 - Parametric Surfaces and Their Areas - 16.6 Exercise - Page 1121: 47

Answer

$$\dfrac{\pi}{6} (65 \sqrt {65} -1)$$

Work Step by Step

We have $A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA= \iint_{D} \sqrt {1+(2x)^2+(2z)^2} dA = \iint_{D} \sqrt {1+4x^2+4z^2} \ dA $ and $\iint_{D} dA$ is the area of the region $D$ Use the polar coordinates as follows: $x=r \cos \theta; y= r \sin \theta$ Therefore, $A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA \\=\int_0^{2\pi} d \theta \int_{0}^{4} r \sqrt {1+4r^2} \ dr$ Substitute $a=1+4r^2 $ and $ r \ dr =\dfrac{da}{ 8}$ Now, $A(S)=2 \pi \int_{1}^{65} \sqrt a \dfrac{da}{ 8}$ This implies that, $A(S)=\dfrac{\pi}{4} [\dfrac{2a^{3/2}}{3}]_1^{65} =\dfrac{\pi}{6} [a\sqrt a]_1^{65}=\dfrac{\pi}{6} (65 \sqrt {65} -1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.