Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.6 - Parametric Surfaces and Their Areas - 16.6 Exercise - Page 1120: 23

Answer

$x=2 \sin \phi, \cos \theta; y=2 \sin \phi, \sin \theta;z=2 \cos \phi$ ;$0 \leq \phi \leq \pi/4,0 \leq \theta \leq \pi/4$ or, $x=x,y=y,z=\sqrt{4-x^2-y^2}; x^2+y^2 \leq \sqrt 2$

Work Step by Step

We need to re-arrange the equation of the sphere as $z=\sqrt{4-(x^2+y^2)}$ This implies that $z=\sqrt{4-(r^2 \sin^2 \theta+r^2 \cos \theta)}=\sqrt {4-r^2}$ Therefore, the points inside the sphere are: $[ r \cos \theta, r \sin \theta , \sqrt{4-(x^2+y^2)}]$ where, $\theta \in [0, 2 \pi] $ and $r \in [\sqrt 2,2] $ Further, we have $\sqrt{x^2+y^2}=\sqrt{4-(x^2+y^2)}$ or, $x^2+y^2=4-(x^2+y^2) \implies r=\sqrt 2$ Hence, the parametric representation of the sphere is: $( r \cos \theta, r \sin \theta , z)$ $x=2 \sin \phi, \cos \theta \\ y=2 \sin \phi, \sin \theta \\ z=2 \cos \phi$ and $0 \leq \phi \leq \pi/4,0 \leq \theta \leq \pi/4$ or, $x=x;y=y;z=\sqrt{4-x^2-y^2}; x^2+y^2 \leq \sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.