Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.3 - The Fundamental Theorem for Line Integrals - 16.3 Exercise - Page 1095: 28

Answer

a) $C_1$ be any curve from $(0,0)$ to $(\pi,0)$ b) $C_2$ be any curve from $(0,0)$ to $(\dfrac{\pi}{2},0)$ (Other answers are also possible.)

Work Step by Step

a) Let us consider that $C_1$ be any curve from $(a,b)$ to $(c,d)$. This implies that $\int_{C_1}F \cdot dr=\int_{C_1} \nabla F \cdot dr=f(c,d)-f(a,b)$ or, $\int_{C_1}F \cdot dr=\int_{C_1} \nabla F \cdot dr=f(r,s)-f(p,q)=\sin (r-2s)-\sin (p-2q)=0$ Thus, we have $a=0,b=0,c=\pi,d=0$and $C_1$ be any curve from $(0,0)$ to $(\pi,0)$ b) Let us consider that $C_2$ be any curve from $(a,b)$ to $(c,d)$. This implies that $\int_{C_1}F \cdot dr=\int_{C_1} \nabla F \cdot dr=f(c,d)-f(a,b)$ or, $\int_{C_1}F \cdot dr=\int_{C_1} \nabla F \cdot dr=f(r,s)-f(p,q)=\sin (r-2s)-\sin (p-2q)=1$ and $a=0,b=0,c=\pi/2,d=0$ Thus, we have: $C_2$ can be any curve from $(0,0)$ to $(\dfrac{\pi}{2},0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.