Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.6 - Triple Integrals - 15.6 Exercise - Page 1037: 6

Answer

$\dfrac{\ln (2)}{3}$

Work Step by Step

Integrate the integral first with respect to $x$, then $z$, and then $y$ $ \int_{0}^1 \int_{0}^{1} \int_{0}^{\sqrt{1-z^2}} \dfrac{z}{y+1} dx dz dy= \int_{0}^1 \int_{0}^{1} [\dfrac{xz}{y+1}]_{0}^{\sqrt{1-z^2}} dz dy=\int_{0}^1 \dfrac{1}{y+1} dy \int_{0}^{1} z\sqrt{1-z^2} dz$ Suppose $1-z^2 =a\implies z dz=-\dfrac{da}{2}$ Now, we have $\int_{0}^1 \dfrac{1}{y+1} dy \int_{0}^{1} z\sqrt{1-z^2} dz=[\ln |y+1|]_{0}^1 \int_{0}^{1} \sqrt a [-\dfrac{1}{2}] da$ Hence, $\int_{0}^1 \int_{0}^{1} \int_{0}^{\sqrt{1-z^2}} \dfrac{z}{y+1} dx dz dy=(\dfrac{-1}{2}) (\ln 2)\int_0^1 \sqrt {a} da=\dfrac{\ln 2}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.