Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1014: 7

Answer

$\frac{1250}{3}$

Work Step by Step

We begin with the integral in rectangular coordinates $$V=\iint_{D}x^2y\,dA$$ Using the substitutions for polar coordinates and adding the bounds for region $D$, we can rewrite the integral as: $$V=\int_{0}^{\pi}\bigg(\int_{0}^{5}(r\cos\theta)^2r\sin\theta\,r\,dr\bigg)d\theta$$ Cleaning this up a bit, we get: $$V=\int_{0}^{\pi}\bigg(\int_{0}^{5}r^4\cos^2\theta\sin\theta\,dr\bigg)d\theta$$ Solving the inner integral, we get: $$V=\int_{0}^{\pi}\bigg[\frac{r^5}{5}\,cos^2\theta\sin\theta\bigg]_{0}^{5}d\theta=625\int_{0}^{\pi}\cos^2\theta\,\sin\theta\,d\theta$$ Using the substitution $u=\cos\theta$ and changing the bounds accordingly, we can rewrite the integral as: $$V=625\int_{1}^{-1}-u^2du=625\int_{-1}^{1}u^2du$$ Solving, we get: $$V=625\bigg[\frac{u^3}{3}\bigg]_{-1}^{1}=\frac{1250}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.