Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.3 - Double Integrals in Polar Coordinates - 15.3 Exercise - Page 1014: 11

Answer

$$ \begin{aligned} \iint_{D} e^{-x^{2}-y^{2}} d A =\frac{\pi}{2}\left(1-e^{-4}\right). \end{aligned} $$

Work Step by Step

$$ \iint_{D} e^{-x^{2}-y^{2}} d A $$ The region $D$ can be described as $$ D=\left\{(x, y) | \quad x \geq 0, \quad a \leq x^{2}+y^{2} \leq 4 \right\} $$ and in polar coordinates it is given by $$ D=\left\{(r, \theta) | 0 \leq r \leq 2 , \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \right\} $$ Therefore, $$ \begin{aligned} \iint_{D} e^{-x^{2}-y^{2}} d A &=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} e^{-r^{2}} r d r d \theta \\ &=\int_{-\pi / 2}^{\pi / 2} d \theta \int_{0}^{2} r e^{-r^{2}} d r \\ & =[\theta]_{-\pi / 2}^{\pi / 2}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{2} \\ &=\pi\left(-\frac{1}{2}\right)\left(e^{-4}-e^{0}\right) \\ &=\frac{\pi}{2}\left(1-e^{-4}\right). \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.