Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1010: 68

Answer

$4$

Work Step by Step

Consider $I=\iint_{D} (2+x^2y^3-y^2 \sin x) \ dx \ dy ....(a)$ and $D=\left\{ (x, y) | |x|+|y| \leq 1 \right\} $ Let us set $ x=-u$ and $ y=-v$ Therefore, $\iint_{D} f(x,y) dA=\iint_{R} (2+(-u)^2(-v)^3-(-v)^2 \sin (-u)) (-du) \ (-dv) \\=\iint_{R} (2-u^2v^3+v^2 \sin u) \ du \ dv$ or, $I= \iint_{R} (2-x^2y^3+y^2 \sin x) \ dx \ dy...(b)$ After adding equations (a) and (b), we get: $I=2 \iint_{D} d A$ and $\iint_{D} d A$ is the area of region $D$. $D$ is the region inside a square of side length $\sqrt 2$, so the area is $2$. This implies that $ \iint_{D} d A =2$ Thus, $I=2 \iint_{D} d A=(2)(2)=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.