Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1010: 67

Answer

$a^2 b+\dfrac{3}{2} ab^2$

Work Step by Step

We can define the domain $D$ in the rectangle as follows: $ D=\left\{ (x, y) | 0 \leq x \leq 9, \ 0 \leq y \leq b \right\} $ Therefore, $$\iint_{D} f(x,y) dA=\iint_{D} (2x+3y) dA \\=\int_{0}^{a} \int_{0}^{b} f(x,y) (2x+3y) \ dy \ dx \\=\int_0^a [2xy +\dfrac{3y^2}{2}]_0^b \ dx \\= \int_0^a 2bx +\dfrac{3b^2}{2} \ dx \\= [bx^2 +\dfrac{3b^2 x}{2}]_0^a \\= a^2 b+\dfrac{3}{2} ab^2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.