Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Review - Exercises - Page 1063: 48

Answer

$\dfrac{64 \pi}{9}$

Work Step by Step

Consider $I=\int_{-2}^{2}\int_{0} ^{\sqrt {4-y^2}}\int_{-\sqrt {4-x^2-y^2}} ^{\sqrt {4-x^2-y^2}} y^2 \sqrt {x^2+y^2+z^2} dz dy dx$ Use spherical coordinates: $x =\rho \sin \phi \cos \theta; y =\rho \sin \phi \sin \theta$ and $\rho^2 =x^2+y^2+z^2$ $I=\int_{0}^{\pi} \int_{-\pi/2} ^{\pi/2 } \int_0^2 \sin^3 \phi d\phi \sin^2 \theta d \theta \rho^5 d\rho $ or, $=\int_{0}^{\pi} \sin^3 \phi d\phi \times \int_{-\pi/2} ^{\pi/2 }\sin^2 \theta d \theta \times \int_0^2 \rho^6 d\rho $ or, $=\dfrac{4}{3} \times [\dfrac{-\sin 2 \theta -2 \theta}{4}|_{-\pi/2} ^{\pi/2 }\times [ \dfrac{ \rho^6 }{6}|_0^2 $ or, $=\dfrac{4}{3} \times \dfrac{\pi}{2} \times \dfrac{32}{3}$ or, $=\dfrac{64 \pi}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.