Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 14 - Section 14.8 - Lagrange Multipliers - 14.8 Exercise - Page 977: 13

Answer

Maximum:$f(\dfrac{1}{2},\dfrac{1}{2}, \dfrac{1}{2},\dfrac{1}{2}) =2$ and minimum: $f(-\dfrac{1}{2},-\dfrac{1}{2}, -\dfrac{1}{2},-\dfrac{1}{2}) =-2$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z,t)=\lambda \nabla g(x,y,z,t)$ This yields $\nabla f=\lt 1,1,1,1 \gt$ and $\lambda \nabla g=\lambda \lt 2x,2y,2z,2t\gt$ Using the constraint condition $x^2+y^2+z^2+t^2=1$ we get, $1=\lambda 2x ,1=\lambda 2y,1=\lambda 2z,1=\lambda 2t$ After solving, we get $x=y=z=t$ Since, $g(x,y)=x^2+y^2+z^2+t^2=1$ gives $x=\pm \dfrac{1}{2}$ Thus, $x=y=z=t= \pm \dfrac{1}{2}$ Hence, Maximum:$f(\dfrac{1}{2},\dfrac{1}{2}, \dfrac{1}{2},\dfrac{1}{2}) =2$ and minimum: $f(-\dfrac{1}{2},-\dfrac{1}{2}, -\dfrac{1}{2},-\dfrac{1}{2}) =-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.