Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 14 - Section 14.7 - Maximum and Minimum Values - 14.7 Exercise - Page 968: 23

Answer

Minimum value: $f(1, \pm 1)=f(-1, \pm 1)=3$

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is not a local minimum and local maximum or, a saddle point. For $(x,y)=(1, \pm 1)$ $D=64-16=48\gt 0$ ; and $f_{xx} =8\gt 0$ For $(x,y)=(-1, \pm 1)$ $D=48\gt 0$ ; and $f_{xx}=8 \gt 0$ and $f_{xx}(x,y)f_{yy}(x,y)-[f_{xy}(x,y)]^2 = 48 \gt 0$ Thus, when $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. Therefore, we have Minimum value: $f(1, \pm 1)=f(-1, \pm 1)=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.