Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 14 - Section 14.5 - The Chain Rule. - 14.5 Exercise - Page 946: 55

Answer

(a). $f(x,y)=x^{2}y+2xy^{2}+5y^{3}$ is homogeneous of degree 3. (b). $x\frac{\partial{f}}{\partial{x}}+y\frac{\partial{f}}{\partial{y}}=nf(x,y)$

Work Step by Step

(a). We know $f(x,y)=x^{2}y+2xy^{2}+5y^{3}$ is a polynomial, thus it has continuous second-order partial derivatives. Moreover, $$f(tx,ty)=(tx)^{2}(ty)+2(tx)(ty)^{2}+5(ty)^{3}=t^{3}x^{2}y+2t^{3}xy^{2}+5t^{3}y^{3}=t^{3}(x^{2}y+2xy^{2}+5y^{3})=t^{3}f(x,y)$$ Therefore $f$ is homogeneous of degree 3. (b). We have $f(tx,ty)=t^{n}f(x,y)$, by the Chain rule, differentiate both sides with respect to t. We obtain, $$\frac{\partial{f(tx,ty)}}{\partial{t}}=\frac{\partial{[t^{n}f(x,y)]}}{\partial{t}}$$ $$\Rightarrow\frac{\partial{f(tx,ty)}}{\partial{(tx)}}\cdot\frac{\partial{(tx)}}{\partial{t}}+\frac{\partial{f(tx,ty)}}{\partial{(ty)}}\cdot\frac{\partial{(ty)}}{\partial{t}}=nt^{n-1}f(x,y)$$ $$\Rightarrow x\cdot\frac{\partial{f(tx,ty)}}{\partial{(tx)}}+y\cdot\frac{\partial{f(tx,ty)}}{\partial{(ty)}}=nt^{n-1}f(x,y)$$ Choose $t=1$, thus, we get $$x\cdot\frac{\partial{f(x,y)}}{\partial{x}}+y\cdot\frac{\partial{f(x,y)}}{\partial{y}}=nf(x,y)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.