Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 14 - Section 14.3 - Partial Derivatives - 14.3 Exercise - Page 926: 84

Answer

$L \dfrac{\partial P}{\partial L}+K \dfrac{\partial P}{\partial K} =(\alpha+\beta)P$

Work Step by Step

Here, $L$ is the variable and all other variables can be treated as constants. $ \dfrac{\partial P}{\partial L}=\alpha bL^{\alpha-1}K^{\beta}$ ; and $ \dfrac{\partial P}{\partial K}=\beta bL^{\alpha}K^{\beta-1}$ Consider the LHS as: $L \times \dfrac{\partial P}{\partial L}+K \times \dfrac{\partial P}{\partial K}= L(\alpha bL^{\alpha-1}K^{\beta})+K(\beta bL^{\alpha}K^{\beta-1})$ $=\alpha b \times L^{\alpha}K^{\beta}+\beta b \times L^{\alpha}K^{\beta}$ $=(\alpha+\beta)b \times L^{\alpha} \times K^{\beta}$ $=(\alpha+\beta)P$ Hence, $L \dfrac{\partial P}{\partial L}+K \dfrac{\partial P}{\partial K} =(\alpha+\beta)P$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.