Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.8 - Power Series - 11.8 Exercises - Page 751: 24


$R=\infty$ ; interval of convergence is $(-\infty,\infty)$

Work Step by Step

Let $a_{n}=\frac{n^{2}x^{n}}{2.4.6.....(2n)}=\frac{n^{2}x^{n}}{2^{n}n!}$, then $\lim\limits_{n \to \infty}|\frac{a_{n+1}}{a_{n}}|=\lim\limits_{n \to \infty}|\dfrac{\frac{(n+1)^{2}x^{n+1}}{2^{n+1}(n+1)!}}{\frac{n^{2}x^{n}}{2^{n}n!}}|$ $=0\lt 1$ Hence, $R=\infty$ ; interval of convergence is $(-\infty,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.