Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 42

Answer

$L = e^{2}+1$

Work Step by Step

Remember the arc length formula for parametrics: $L=\int^{b}_{a}\sqrt((\frac{dx}{dt})^{2}+(\frac{dy}{dt})^{2})dt$ $x= e^{t}-t$ $\frac{dx}{dt}= e^{t}-1$ $y= 4e^{\frac{t}{2}}$ $\frac{dy}{dt}= 2e^{\frac{t}{2}}$ Now that we have the derivatives, we can now find the arc length across $0\leq t\leq2$ $L=\int^{2}_{0}\sqrt(( e^{t}-1)^{2}+(2e^{\frac{t}{2}})^{2})dt$ $=\int^{2}_{0}\sqrt( e^{2t}-2e^{t}+1+4e^{t})dt$ $=\int^{2}_{0}\sqrt( e^{2t}+2e^{t}+1)dt$ $=\int^{2}_{0}\sqrt( (e^{t}+1)^{2})dt$ $=\int^{2}_{0}e^{t}+1 dt$ $= e^{t}+t]^{2}_{0}$ $=(e^{2}+2)-(e^{0}+0)$ $=e^2+2-1$ $=e^2+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.