Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 40

Answer

$$ x=t+\sqrt{t} , \quad y=t-\sqrt{t},\quad 0 \leq t \leq 1 $$ the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{1} \sqrt{2+\frac{1}{2 t}} d t \\ &=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \sqrt{2+\frac{1}{2 t}} d t\\ & \approx 2.0915 \end{aligned} $$

Work Step by Step

$$ x=t+\sqrt{t} , \quad y=t-\sqrt{t},\quad 0 \leq t \leq 1 $$ then $$ d x / d t=1+\frac{1}{2 \sqrt{t}} , \quad d y / d t=1-\frac{1}{2 \sqrt{t}}, $$ so $$ \begin{aligned} (d x / d t)^{2}+(d y / d t)^{2}& =\left(1+\frac{1}{2 \sqrt{t}}\right)^{2}+\left(1-\frac{1}{2 \sqrt{t}}\right)^{2} \\ &=1+\frac{1}{\sqrt{t}}+\frac{1}{4 t}+1-\frac{1}{\sqrt{t}}+\frac{1}{4 t} \\ &=2+\frac{1}{2 t} \end{aligned} $$ Thus the length of the given curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{1} \sqrt{2+\frac{1}{2 t}} d t \\ &=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \sqrt{2+\frac{1}{2 t}} d t\\ & \approx 2.0915 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.