Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 8 - Sequences and Infinite Series - 8.2 Sequences - 8.2 Exercises - Page 616: 33

Answer

The limit does not exist.

Work Step by Step

Definition of a sequence defined by a function: Let us consider a function $f(x)$ whose limit $\lim\limits_{x \to \infty} f(x)$ exists then the sequence $a_n=f(n)$ will converge to the same limit. That is, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} f(x)$ Here, we have $a_n=\dfrac{(-1)^n \ n}{n+1}$ and $f(x)=\dfrac{(-1)^x \ x}{x+1}$ Next, $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} \dfrac{(-1)^x \ x}{x+1}=\lim\limits_{n \to \infty} \dfrac{(-1)^x}{(1+\dfrac{1}{x})}$ a) When $n$ is odd. $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} \dfrac{-1}{(1+\dfrac{1}{x})}=\dfrac{-1}{1+0}=-1$ b) When $n$ is even. $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} \dfrac{1}{(1+\dfrac{1}{x})}=\dfrac{1}{1+0}=1$ Thus. we see that the limit of $a_n$ is different in both cases, so the limit does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.