Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.9 Introduction to Differential Equations - 7.9 Exercises - Page 589: 16

Answer

$${\text{The function is a solution of the initial value problem}}{\text{.}}$$

Work Step by Step

$$\eqalign{ & y\left( t \right) = \frac{1}{4}\left( {{e^{2x}} - {e^{ - 2x}}} \right);{\text{ }}y''\left( x \right) - 4y = 0 \cr & {\text{Initial conditions: }}y\left( 0 \right) = 0{\text{ and }}y'\left( 0 \right) = 1 \cr & y\left( t \right) = - 3\cos 3t \cr & {\text{Calculate the first and second derivative}} \cr & y'\left( t \right) = \frac{d}{{dt}}\left[ {\frac{1}{4}\left( {{e^{2x}} - {e^{ - 2x}}} \right)} \right] \cr & y'\left( t \right) = \frac{1}{4}\left( {2{e^{2x}} + 2{e^{ - 2x}}} \right) \cr & y'\left( t \right) = \frac{1}{2}\left( {{e^{2x}} + {e^{ - 2x}}} \right) \cr & \cr & y''\left( t \right) = \frac{d}{{dt}}\left[ {\frac{1}{2}\left( {{e^{2x}} + {e^{ - 2x}}} \right)} \right] \cr & y''\left( t \right) = \frac{1}{2}\left( {2{e^{2x}} - 2{e^{ - 2x}}} \right) \cr & y''\left( t \right) = {e^{2x}} - {e^{ - 2x}} \cr & {\text{Substitute the derivatives into the given differential equation }} \cr & y''\left( x \right) - 4y = 0 \cr & {e^{2x}} - {e^{ - 2x}} - 4\left( {\frac{1}{4}\left( {{e^{2x}} - {e^{ - 2x}}} \right)} \right) = 0 \cr & {e^{2x}} - {e^{ - 2x}} - \left( {{e^{2x}} - {e^{ - 2x}}} \right) = 0 \cr & {e^{2x}} - {e^{ - 2x}} - {e^{2x}} + {e^{ - 2x}} = 0 \cr & 0 = 0{\text{ Proved}} \cr & \cr & {\text{Verifying the initial conditions}} \cr & y\left( t \right) = \frac{1}{4}\left( {{e^{2x}} - {e^{ - 2x}}} \right),{\text{ }}y\left( 0 \right) = 0 \cr & y\left( 0 \right) = \frac{1}{4}\left( {{e^0} - {e^0}} \right) \cr & y\left( 0 \right) = 0 \cr & \cr & and \cr & y'\left( t \right) = \frac{1}{2}\left( {{e^{2x}} + {e^{ - 2x}}} \right),{\text{ }}y'\left( 0 \right) = 1 \cr & y'\left( 0 \right) = \frac{1}{2}\left( {{e^0} + {e^0}} \right) \cr & y'\left( 0 \right) = \frac{1}{2}\left( 2 \right) \cr & y'\left( 0 \right) = 1 \cr & \cr & {\text{The function is a solution of the initial value problem}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.