Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.5 Partial Fractions - 7.5 Exercises - Page 550: 77

Answer

$$\frac{{4{{\left( {x + 2} \right)}^{3/4}}}}{3} - 2{\left( {x + 2} \right)^{1/2}} + 4{\left( {x + 2} \right)^{1/4}} - \ln {\left( {{{\left( {x + 2} \right)}^{1/4}} + 1} \right)^4} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\root 4 \of {x + 2} + 1}}} \cr & {\text{letting }}x + 2 = {u^4},{\text{ }}dx = 4{u^3}du \cr & = \int {\frac{{dx}}{{x - \root 3 \of x }}} = \int {\frac{{3{u^2}du}}{{{u^3} - \root 3 \of {{u^3}} }}} \cr & = \int {\frac{{dx}}{{\root 4 \of {x + 2} + 1}}} = \int {\frac{{4{u^3}du}}{{\root 4 \of {{u^4}} + 1}}} \cr & = \int {\frac{{4{u^3}}}{{u + 1}}} du \cr & {\text{by the long division}} \cr & = \int {\left( {4{u^2} - 4u + 4 - \frac{4}{{u + 1}}} \right)} du \cr & {\text{Integrating}} \cr & = \frac{{4{u^3}}}{3} - 2{u^2} + 4u - 4\ln \left| {u + 1} \right| + C \cr & x + 2 = {u^4} \to u = \root 4 \of {x + 2} \cr & = \frac{{4{{\left( {\root 4 \of {x + 2} } \right)}^3}}}{3} - 2{\left( {\root 4 \of {x + 2} } \right)^2} + 4\root 4 \of {x + 2} - 4\ln \left| {\root 4 \of {x + 2} + 1} \right| + C \cr & {\text{Simplify}} \cr & = \frac{{4{{\left( {x + 2} \right)}^{3/4}}}}{3} - 2{\left( {x + 2} \right)^{1/2}} + 4{\left( {x + 2} \right)^{1/4}} - \ln {\left( {{{\left( {x + 2} \right)}^{1/4}} + 1} \right)^4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.