Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.5 Partial Fractions - 7.5 Exercises - Page 550: 71

Answer

$$\frac{1}{3}\ln \left| {\frac{{{e^x} - 1}}{{{e^x} + 2}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^x}}}{{\left( {{e^x} - 1} \right)\left( {{e^x} + 2} \right)}}dx} \cr & {\text{set }}u = {e^x},{\text{ }}du = {e^x}dx \cr & \int {\frac{{{e^x}}}{{\left( {{e^x} - 1} \right)\left( {{e^x} + 2} \right)}}dx} = \int {\frac{{du}}{{\left( {u - 1} \right)\left( {u + 2} \right)}}} \cr & {\text{partial fractions}} \cr & \frac{1}{{\left( {u - 1} \right)\left( {u + 2} \right)}} = \frac{A}{{u - 1}} + \frac{B}{{u + 2}} \cr & 1 = A\left( {u + 2} \right) + B\left( {u - 1} \right) \cr & u = 1 \to \frac{1}{3} = A \cr & u = - 2 \to - \frac{1}{3} = B \cr & \frac{A}{{u - 1}} + \frac{B}{{u + 2}} = \frac{{1/3}}{{u - 1}} + \frac{{ - 1/3}}{{u + 2}} \cr & = \int {\frac{{du}}{{\left( {u - 1} \right)\left( {u + 2} \right)}}} = \int {\left( {\frac{{1/3}}{{u - 1}} + \frac{{ - 1/3}}{{u + 2}}} \right)du} \cr & {\text{find the antiderivative}} \cr & = \frac{1}{3}\ln \left| {u - 1} \right| - \frac{1}{3}\ln \left| {u + 2} \right| + C \cr & = \frac{1}{3}\ln \left| {\frac{{u - 1}}{{u + 2}}} \right| + C \cr & = \frac{1}{3}\ln \left| {\frac{{{e^x} - 1}}{{{e^x} + 2}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.