Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.4 Trigonometric Substitutions - 7.4 Exercises - Page 539: 77

Answer

$$\ln \left( {2 + \sqrt 3 } \right)\left( {\sqrt 2 - 1} \right)$$

Work Step by Step

$$\eqalign{ & \int_{2 + \sqrt 2 }^4 {\frac{{dx}}{{\sqrt {\left( {x - 1} \right)\left( {x - 3} \right)} }}} \cr & {\text{Use FOIL}} \cr & = \int_{2 + \sqrt 2 }^4 {\frac{{dx}}{{\sqrt {{x^2} - 3x - x + 3} }}} \cr & = \int_{2 + \sqrt 2 }^4 {\frac{{dx}}{{\sqrt {{x^2} - 4x + 3} }}} \cr & {\text{Completing the square}} \cr & {x^2} - 4x + 3 = {\left( {x - 2} \right)^2} - 1 \cr & = \int_{2 + \sqrt 2 }^4 {\frac{{dx}}{{\sqrt {{{\left( {x - 2} \right)}^2} - 1} }}} \cr & {\text{Let }}u = x - 2,\,\,\,\,du = dx \cr & {\text{Change the limits of integration}} \cr & x = 4,\,\,\,\,u = 2 \cr & x = 2 + \sqrt 2 ,\,\,\,\,u = \sqrt 2 \cr & {\text{Use the change of variable}} \cr & \int_{2 + \sqrt 2 }^4 {\frac{{dx}}{{\sqrt {{{\left( {x - 2} \right)}^2} - 1} }}} = \int_{\sqrt 2 }^2 {\frac{{du}}{{\sqrt {{u^2} - 1} }}} \cr & \cr & {\text{Let }}u = \sec \theta ,\,\,\,du = \sec \theta \tan \theta d\theta \cr & \int_{\sqrt 2 }^2 {\frac{{du}}{{\sqrt {{u^2} - 1} }}} = \int_{{{\sec }^{ - 1}}\sqrt 2 }^{{{\sec }^{ - 1}}2} {\frac{{\sec \theta \tan \theta d\theta }}{{\sqrt {{{\sec }^2}\theta - 1} }}} \cr & = \int_{\pi /4}^{\pi /3} {\frac{{\sec \theta \tan \theta d\theta }}{{\sqrt {{{\tan }^2}\theta } }}} \cr & = \int_{\pi /4}^{\pi /3} {\sec \theta } d\theta \cr & \cr & {\text{Integrate}} \cr & = \left( {\ln \left| {\sec \theta + \tan \theta } \right|} \right)_{\pi /4}^{\pi /3} \cr & = \ln \left| {\sec \left( {\frac{\pi }{3}} \right) + \tan \left( {\frac{\pi }{3}} \right)} \right| - \ln \left| {\sec \left( {\frac{\pi }{4}} \right) + \tan \left( {\frac{\pi }{4}} \right)} \right| \cr & = \ln \left| {2 + \sqrt 3 } \right| + \ln \left| {\sqrt 2 - 1} \right| \cr & = \ln \left( {2 + \sqrt 3 } \right)\left( {\sqrt 2 - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.