Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.4 Trigonometric Substitutions - 7.4 Exercises - Page 537: 20

Answer

$$\frac{x}{{\sqrt {{x^2} + 1} }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}} \cr & {\text{The integrand contains the form }}{a^2} + {x^2} \cr & 1 + {x^2} \to a = 1 \cr & {\text{Use the change of variable }}x = a\tan \theta \cr & x = \tan \theta ,\,\,\,dx = {\sec ^2}\theta d\theta \cr & \cr & {\text{Substituting}} \cr & \int {\frac{{dx}}{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}} = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\left( {1 + {{\tan }^2}\theta } \right)}^{3/2}}}}} \cr & {\text{Simplifying}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\left( {{{\sec }^2}\theta } \right)}^{3/2}}}}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\sec }^3}\theta }}} \cr & = \int {\frac{1}{{\sec \theta }}} d\theta \cr & = \int {\cos \theta } d\theta \cr & {\text{Integrating}} \cr & = \sin \theta + C \cr & \cr & {\text{Write in terms of }}x \cr & \tan \theta = x \to \frac{{opp}}{{ady}} = \frac{x}{1},\,\,\,hyp = \sqrt {{x^2} + 1} \cr & \sin \theta = \frac{{opp}}{{hyp}} = \frac{x}{{\sqrt {{x^2} + 1} }} \cr & ,{\text{then}} \cr & = \frac{x}{{\sqrt {{x^2} + 1} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.