Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.1 Basic Approaches - 7.1 Exercises - Page 515: 59

Answer

$$A = \frac{1}{3}\ln \left( {26} \right)$$

Work Step by Step

$$\eqalign{ & y = \frac{{{x^2}}}{{{x^3} - 3x}}{\text{ and }}y = \frac{1}{{{x^3} - 3x}}{\text{ on the interval }}\left[ {2,4} \right] \cr & {\text{From the graph we can see that }}\frac{{{x^2}}}{{{x^3} - 3x}} > \frac{1}{{{x^3} - 3x}}{\text{ on }}\left[ {2,4} \right] \cr & {\text{The area is given by:}} \cr & A = \int_2^4 {\left( {\frac{{{x^2}}}{{{x^3} - 3x}} - \frac{1}{{{x^3} - 3x}}} \right)} dx \cr & A = \int_2^4 {\left( {\frac{{{x^2} - 1}}{{{x^3} - 3x}}} \right)} dx \cr & A = \frac{1}{3}\int_2^4 {\left( {\frac{{3{x^2} - 3}}{{{x^3} - 3x}}} \right)} dx \cr & A = \frac{1}{3}\left[ {\ln \left| {{x^3} - 3x} \right|} \right]_2^4 \cr & A = \frac{1}{3}\left[ {\ln \left| {{{\left( 4 \right)}^3} - 3\left( 4 \right)} \right| - \ln \left| {{{\left( 2 \right)}^3} - 3\left( 2 \right)} \right|} \right] \cr & A = \frac{1}{3}\left[ {\ln \left| {52} \right| - \ln \left| 2 \right|} \right] \cr & A = \frac{1}{3}\ln \left( {\frac{{52}}{2}} \right) \cr & A = \frac{1}{3}\ln \left( {26} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.