Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.1 Basic Approaches - 7.1 Exercises - Page 515: 49

Answer

$$\frac{1}{2}\ln \left( {{x^2} + 6x + 13} \right) - \frac{5}{2}{\tan ^{ - 1}}\left( {\frac{{x + 3}}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{x - 2}}{{{x^2} + 6x + 13}}dx} \cr & {\text{Completing the square}} \cr & = \int {\frac{{x - 2}}{{{x^2} + 6x + 9 + 4}}dx} \cr & = \int {\frac{{x - 2}}{{{{\left( {x + 3} \right)}^2} + {2^2}}}dx} \cr & {\text{Let }}u = x + 3,\,\,\,du = dx \cr & = \int {\frac{{u - 5}}{{{u^2} + {2^2}}}du} \cr & = \int {\frac{u}{{{u^2} + {2^2}}}du} - \int {\frac{5}{{{u^2} + {2^2}}}du} \cr & = \frac{1}{2}\int {\frac{{2u}}{{{u^2} + {2^2}}}du} - 5\int {\frac{1}{{{u^2} + {2^2}}}du} \cr & {\text{Integrating}} \cr & {\text{ = }}\frac{1}{2}\ln \left( {{u^2} + {2^2}} \right) - 5\left( {\frac{1}{2}} \right){\tan ^{ - 1}}\left( {\frac{u}{2}} \right) + C \cr & {\text{ = }}\frac{1}{2}\ln \left( {{u^2} + 4} \right) - \frac{5}{2}{\tan ^{ - 1}}\left( {\frac{u}{2}} \right) + C \cr & {\text{substitute }}u = x + 3 \cr & {\text{ = }}\frac{1}{2}\ln \left( {{x^2} + 6x + 13} \right) - \frac{5}{2}{\tan ^{ - 1}}\left( {\frac{{x + 3}}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.