Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - Review Exercises: 69

Answer

$$\frac{{4{x^3}}}{3} + 2{x^2} + x + C$$

Work Step by Step

$$\eqalign{ & \int {{{\left( {2x + 1} \right)}^2}} dx \cr & {\text{expanding the integrand}} \cr & \int {\left( {4{x^2} + 4x + 1} \right)} dx \cr & {\text{integrate by the power rule}} \cr & = \frac{{4{x^{2 + 1}}}}{{2 + 1}} + \frac{{4{x^{1 + 1}}}}{{1 + 1}} + x + C \cr & {\text{Simplify}} \cr & = \frac{{4{x^3}}}{3} + \frac{{4{x^2}}}{2} + x + C \cr & = \frac{{4{x^3}}}{3} + 2{x^2} + x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.