Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 87

Answer

$$\,\,\,\frac{{d\left( {{x^{\cos x}}} \right)}}{{dx}} = {x^{\cos x}}\left( {\frac{{\cos x}}{x} - \left( {\sin x} \right)\ln x} \right)$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left( {{x^{\cos x}}} \right) \cr & {\text{let }}y = {x^{\cos x}} \cr & {\text{taking the natural logarithm of both sides of the equation}} \cr & \,\,\,\ln y = \ln {x^{\cos x}} \cr & {\text{using logarithmic properties}} \cr & \,\,\,\ln y = \cos x\ln x \cr & {\text{differentiate both sides with respect to }}x \cr & \,\,\,\frac{d}{{dx}}\left( {\ln y} \right) = \frac{d}{{dx}}\left( {\cos x\ln x} \right) \cr & {\text{product rule}} \cr & \,\,\,\frac{d}{{dx}}\left( {\ln y} \right) = \cos x\frac{d}{{dx}}\left( {\ln x} \right) + \ln x\frac{d}{{dx}}\left( {\cos x} \right) \cr & {\text{compute derivatives}} \cr & \,\,\,\frac{1}{y}\frac{{dy}}{{dx}} = \cos x\left( {\frac{1}{x}} \right) + \ln x\left( { - \sin x} \right) \cr & \,\,\,\frac{1}{y}\frac{{dy}}{{dx}} = \frac{{\cos x}}{x} - \left( {\sin x} \right)\ln x \cr & \,\,\,\frac{{dy}}{{dx}} = y\left( {\frac{{\cos x}}{x} - \left( {\sin x} \right)\ln x} \right) \cr & {\text{replace }}y{\text{ with }}{x^{\cos x}} \cr & \,\,\,\frac{{d\left( {{x^{\cos x}}} \right)}}{{dx}} = {x^{\cos x}}\left( {\frac{{\cos x}}{x} - \left( {\sin x} \right)\ln x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.