Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 76

Answer

$$\frac{{dy}}{{dx}} = g{\left( x \right)^{h\left( x \right) - 1}}g'\left( x \right)h\left( x \right) + g{\left( x \right)^{h\left( x \right)}}h'\left( x \right)\ln g\left( x \right)$$

Work Step by Step

$$\eqalign{ & y = g{\left( x \right)^{h\left( x \right)}} \cr & \left( i \right){\text{Using the fact that }}{b^x} = {e^{x\ln b}},{\text{ then}} \cr & y = {e^{h\left( x \right)\ln \left( {g\left( x \right)} \right)}} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = {e^{h\left( x \right)\ln \left( {g\left( x \right)} \right)}}\frac{d}{{dx}}\left[ {h\left( x \right)\ln \left( {g\left( x \right)} \right)} \right] \cr & \frac{{dy}}{{dx}} = {e^{h\left( x \right)\ln \left( {g\left( x \right)} \right)}}\left[ {h\left( x \right)\left( {\frac{{g'\left( x \right)}}{{g\left( x \right)}}} \right) + h'\left( x \right)\ln \left( {g\left( x \right)} \right)} \right] \cr & \frac{{dy}}{{dx}} = {e^{h\left( x \right)\ln \left( {g\left( x \right)} \right)}}\left[ {\frac{{g'\left( x \right)h\left( x \right)}}{{g\left( x \right)}} + h'\left( x \right)\ln \left( {g\left( x \right)} \right)} \right] \cr & {\text{Substitute }}g{\left( x \right)^{h\left( x \right)}}{\text{ for }}{e^{h\left( x \right)\ln \left( {g\left( x \right)} \right)}} \cr & \frac{{dy}}{{dx}} = g{\left( x \right)^{h\left( x \right)}}\left[ {\frac{{g'\left( x \right)h\left( x \right)}}{{g\left( x \right)}} + h'\left( x \right)\ln \left( {g\left( x \right)} \right)} \right] \cr & \frac{{dy}}{{dx}} = g{\left( x \right)^{h\left( x \right) - 1}}g'\left( x \right)h\left( x \right) + g{\left( x \right)^{h\left( x \right)}}h'\left( x \right)\ln \left( {g\left( x \right)} \right) \cr & \cr & \left( {ii} \right){\text{Using the logarithmic differentiation}} \cr & \ln y = \ln g{\left( x \right)^{h\left( x \right)}} \cr & \ln y = h\left( x \right)\ln g\left( x \right) \cr & {\text{Differentiate both sides}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = h\left( x \right)\left( {\frac{{g'\left( x \right)}}{{g\left( x \right)}}} \right) + \ln g\left( x \right)h'\left( x \right) \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \frac{{h\left( x \right)g'\left( x \right)}}{{g\left( x \right)}} + \ln g\left( x \right)h'\left( x \right) \cr & {\text{Solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = y\frac{{h\left( x \right)g'\left( x \right)}}{{g\left( x \right)}} + y\ln g\left( x \right)h'\left( x \right) \cr & {\text{Where }}y = g{\left( x \right)^{h\left( x \right)}} \cr & \frac{{dy}}{{dx}} = \frac{{g{{\left( x \right)}^{h\left( x \right)}}h\left( x \right)g'\left( x \right)}}{{g\left( x \right)}} + g{\left( x \right)^{h\left( x \right)}}\ln g\left( x \right)h'\left( x \right) \cr & \frac{{dy}}{{dx}} = g{\left( x \right)^{h\left( x \right) - 1}}g'\left( x \right)h\left( x \right) + g{\left( x \right)^{h\left( x \right)}}h'\left( x \right)\ln g\left( x \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.