#### Answer

$y'= (2p+2\pi)(\sin(p^2)) + (p+\pi)^2(2p\cos(p^2))$

#### Work Step by Step

Chain Rule
$\frac{d}{dx}[f(g(x))] = f'(g(x)) \times g'(x)$
$y=(p+\pi)^2sin(p^2)$
Product Rule:
$y' = (\frac{d}{dx}(p+\pi)^2)(sin(p^2))+((p+\pi)^2)(\frac{d}{dx}sin(p^2))$
Chain Rule:
$y'=(2(p+\pi))(sin(p^2))+((p+\pi)^2)(2pcos(p^2)) = (2p+2\pi)(\sin(p^2)) + (p+\pi)^2(2p\cos(p^2))$