Answer
$0$
Work Step by Step
We are given that $F(x,y)=(y, \ x)$
Also, the curve is $r(t)= (8 \cos t, 8 \sin t)$
This implies that $r'(t) = (-8 \sin t, 8 \cos t)$
Therefore, the integral is:
$\oint F \ dr=\int_0^{2 \pi} F[r(t)] r'(t) \ dt\\=\int_0^{2 \pi} (8 \sin t, 8 \cos t) (-8 \sin t, 8 \cos t)\\=\int_0^{2 \pi} 64 \cos (2t) \ dt \\=32 \times [\sin (2t)]_0^{2 \pi}\\=0 $