Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 14 - Vector Calculus - 14.3 Conservative Vector Fields - 14.3 Exercises - Page 1085: 24

Answer

$\phi(x,y,z)=\dfrac{1}{2}\ln (x^2+y^2+z^2)$

Work Step by Step

For a vector field to be Conservative, $\dfrac{\partial f}{\partial y}=\dfrac{\partial g}{\partial x}$ and $\dfrac{\partial g}{\partial z}=\dfrac{\partial h}{\partial y}$ and $\dfrac{\partial f}{\partial z}=\dfrac{\partial h}{\partial x}$ We have: $f(x,y,z)=\dfrac{x}{x^2+y^2+z^2}, g(x,y,z) =\dfrac{y}{x^2+y^2+z^2}$ and $h(x,y,z)=\dfrac{z}{x^2+y^2+z^2}$ Thus, $\dfrac{\partial f}{\partial y}=\dfrac{2xy}{(x^2+y^2+z^2)^2}=\dfrac{\partial g}{\partial x}$ and $\dfrac{\partial g}{\partial z}=\dfrac{2yz}{(x^2+y^2+z^2)^2}=\dfrac{\partial h}{\partial y}$ and $\dfrac{\partial f}{\partial z}=\dfrac{2xz}{(x^2+y^2+z^2)^2}=\dfrac{\partial h}{\partial x}$ Therefore, a vector field $F$ is Conservative. Now, potential function $F=\nabla \phi$ So, $\dfrac{\partial \phi}{\partial x}=\dfrac{x}{(x^2+y^2+z^2)^2} \implies \phi(x,y,z)=\dfrac{1}{2} \ln (x^2+y^2+z^2)+a(y,z)$ and $\dfrac{\partial \phi}{\partial y}=\dfrac{y}{(x^2+y^2+z^2)^2} =\dfrac{y}{(x^2+y^2+z^2)^2} +\dfrac{\partial a}{\partial y} \implies \dfrac{\partial a}{\partial y}=0 \implies a(y,z)=b(z)$ and $\dfrac{\partial \phi}{\partial z}=\dfrac{y}{(x^2+y^2+z^2)^2} =\dfrac{y}{(x^2+y^2+z^2)^2} +b'(z) \implies b(z)=c$ Thus, $\phi(x,y,z)=\dfrac{1}{2}\ln (x^2+y^2+z^2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.