Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 12 - Functions of Several Veriables - 12.6 Directional Derivatives and the Gradient - 12.6 Exercises - Page 926: 25

Answer

$$0$$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = \ln \left( {4 + {x^2} + {y^2}} \right);\,\,\,\,\,\,P\left( { - 1,2} \right);\,\,\,\,\,\left\langle {2,1} \right\rangle \cr & {\bf{u}} = \frac{{\left\langle {2,1} \right\rangle }}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( 1 \right)}^2}} }} = \left\langle {\frac{2}{{\sqrt 5 }},\frac{1}{{\sqrt 5 }}} \right\rangle \cr & {\bf{u}}{\text{ is a unit vector in the direction of }}\left\langle {2,1} \right\rangle \cr & {\text{The gradient of }}g\left( {x,y} \right){\text{ is}} \cr & {g_x}\left( {x,y} \right) = \frac{{2x}}{{4 + {x^2} + {y^2}}} \cr & {g_y}\left( {x,y} \right) = \frac{{2y}}{{4 + {x^2} + {y^2}}} \cr & \nabla g\left( {x,y} \right) = \frac{{2x}}{{4 + {x^2} + {y^2}}}{\bf{i}} + \frac{{2y}}{{4 + {x^2} + {y^2}}}{\bf{j}} \cr & \nabla g\left( {x,y} \right) = \frac{2}{{4 + {x^2} + {y^2}}}\left( {x{\bf{i}} + y{\bf{j}}} \right) \cr & \cr & {\text{Calculate the gradient at the point }}P\left( { - 1,2} \right) \cr & \nabla g\left( { - 1,2} \right) = \frac{2}{{4 + {{\left( { - 1} \right)}^2} + {{\left( 2 \right)}^2}}}\left( { - {\bf{i}} + 2{\bf{j}}} \right) \cr & \nabla g\left( { - 1,2} \right) = \frac{2}{9}\left( { - {\bf{i}} + 2{\bf{j}}} \right) \cr & \nabla g\left( { - 1,2} \right) = \left\langle { - \frac{2}{9},\frac{4}{9}} \right\rangle \cr & \cr & {\text{Computing the directional derivatives of }}h{\text{ at }}\left( { - 1,2} \right) \cr & \operatorname{in} {\text{ the direction of the vector }}{\bf{u}} = \left\langle {\frac{2}{{\sqrt 5 }},\frac{1}{{\sqrt 5 }}} \right\rangle \cr & {D_{\bf{u}}}g\left( {a,b} \right) = \nabla g\left( {a,b} \right) \cdot {\bf{u}} \cr & {D_{\bf{u}}}g\left( { - 1,2} \right) = \left\langle { - \frac{2}{9},\frac{4}{9}} \right\rangle \cdot \left\langle {\frac{2}{{\sqrt 5 }},\frac{1}{{\sqrt 5 }}} \right\rangle \cr & {D_{\bf{u}}}g\left( { - 1,2} \right) = - \frac{4}{{9\sqrt 5 }} + \frac{4}{{9\sqrt 5 }} \cr & {D_{\bf{u}}}g\left( { - 1,2} \right) = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.