Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 12 - Functions of Several Veriables - 12.6 Directional Derivatives and the Gradient - 12.6 Exercises - Page 926: 24

Answer

$$ - \frac{1}{{3\sqrt 2 }}$$

Work Step by Step

$$\eqalign{ & h\left( {x,y} \right) = {e^{ - x - y}};\,\,\,\,\,\,P\left( {\ln 2,\ln 3} \right);\,\,\,\,\,\left\langle {1,1} \right\rangle \cr & {\bf{u}} = \frac{{\left\langle {1,1} \right\rangle }}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} }} = \left\langle {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right\rangle \cr & {\bf{u}}{\text{ is a unit vector in the direction of }}\left\langle {1,1} \right\rangle \cr & {\text{The gradient of }}h\left( {x,y} \right){\text{ is}} \cr & {h_x}\left( {x,y} \right) = - {e^{ - x - y}} \cr & {h_y}\left( {x,y} \right) = - {e^{ - x - y}} \cr & \nabla h\left( {x,y} \right) = - {e^{ - x - y}}{\bf{i}} - {e^{ - x - y}}{\bf{j}} \cr & \nabla h\left( {x,y} \right) = - {e^{ - x - y}}\left( {{\bf{i}} + {\bf{j}}} \right) \cr & \cr & {\text{Calculate the gradient at the point }}P\left( {\ln 2,\ln 3} \right) \cr & \nabla h\left( {\ln 2,\ln 3} \right) = - {e^{ - \ln 2 - \ln 3}}\left( {{\bf{i}} + {\bf{j}}} \right) \cr & \nabla h\left( {\ln 2,\ln 3} \right) = - \frac{1}{6}\left( {{\bf{i}} + {\bf{j}}} \right) \cr & \nabla h\left( {\ln 2,\ln 3} \right) = \left\langle { - \frac{1}{6}, - \frac{1}{6}} \right\rangle \cr & \cr & {\text{Computing the directional derivatives of }}h{\text{ at }}\left( {\ln 2,\ln 3} \right) \cr & \operatorname{in} {\text{ the direction of the vector }}{\bf{u}} = \left\langle {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right\rangle \cr & {D_{\bf{u}}}h\left( {a,b} \right) = \nabla h\left( {a,b} \right) \cdot {\bf{u}} \cr & {D_{\bf{u}}}h\left( {\ln 2,\ln 3} \right) = \left\langle { - \frac{1}{6}, - \frac{1}{6}} \right\rangle \cdot \left\langle {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right\rangle \cr & {D_{\bf{u}}}h\left( {\ln 2,\ln 3} \right) = - \frac{1}{{6\sqrt 2 }} - \frac{1}{{6\sqrt 2 }} \cr & {D_{\bf{u}}}h\left( {\ln 2,\ln 3} \right) = - \frac{1}{{3\sqrt 2 }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.