Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.8 Length of Curves - 11.8 Exercises - Page 839: 30

Answer

$$L \approx 2.73$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {{e^t},2{e^{ - t}},t} \right\rangle {\text{, for }}0 \leqslant t \leqslant \ln 3 \cr & {\text{find }}{\bf{r}}'\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left\langle {{e^t},2{e^{ - t}},t} \right\rangle \cr & {\bf{r}}'\left( t \right) = \left\langle {{e^t}, - 2{e^{ - t}},1} \right\rangle \cr & {\text{The speed is given by}} \cr & \left| {{\bf{r}}'\left( t \right)} \right| = \left| {\left\langle {{e^t}, - 2{e^{ - t}},1} \right\rangle } \right| \cr & \left| {{\bf{r}}'\left( t \right)} \right| = \sqrt {{{\left( {{e^t}} \right)}^2} + {{\left( { - 2{e^{ - t}}} \right)}^2} + {{\left( 1 \right)}^2}} \cr & \left| {{\bf{r}}'\left( t \right)} \right| = \sqrt {{e^{2t}} + 4{e^{ - 2t}} + 1} \cr & {\text{Find the length of the trajectory}} \cr & {\text{Use the Definition of Arc Length for Vector Functions }} \cr & {\text{for a vector }}{\bf{r}}'\left( t \right) = \left\langle {f'\left( t \right),g'\left( t \right),h'\left( t \right)} \right\rangle \cr & L = \int_a^b {\sqrt {f'{{\left( t \right)}^2} + g'{{\left( t \right)}^2} + h'{{\left( t \right)}^2}} dt} = \int_a^b {\left| {{\bf{r}}'\left( t \right)} \right|} dt \cr & {\text{then}} \cr & L = \int_0^{\ln 3} {\sqrt {{e^{2t}} + 4{e^{ - 2t}} + 1} } dt \cr & {\text{Calculate using a computer or calculator}} \cr & L \approx 2.73 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.