Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.8 Length of Curves - 11.8 Exercises - Page 839: 22

Answer

$$L = 10\pi $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {3\cos t,4\cos t,5\sin t} \right\rangle {\text{, for }}0 \leqslant t \leqslant 2\pi \cr & {\text{find }}{\bf{r}}'\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left\langle {3\cos t,4\cos t,5\sin t} \right\rangle \cr & {\text{differentiating}} \cr & {\bf{r}}'\left( t \right) = \left\langle { - 3\sin t, - 4\sin t,5\cos t} \right\rangle \cr & {\text{Use the Definition of Arc Length for Vector Functions }} \cr & {\text{for a vector }}{\bf{r}}'\left( t \right) = \left\langle {f'\left( t \right),g'\left( t \right),h'\left( t \right)} \right\rangle \cr & L = \int_a^b {\sqrt {f'{{\left( t \right)}^2} + g'{{\left( t \right)}^2} + h'{{\left( t \right)}^2}} dt} = \int_a^b {\left| {{\bf{r}}'\left( t \right)} \right|} dt \cr & {\text{then}} \cr & L = \int_0^{2\pi } {\left| {\left\langle { - 3\sin t, - 4\sin t,5\cos t} \right\rangle } \right|} dt \cr & L = \int_0^{2\pi } {\sqrt {{{\left( { - 3\sin t} \right)}^2} + {{\left( { - 4\sin t} \right)}^2} + \left( {5\cos t} \right)} } dt \cr & {\text{simplifying}} \cr & L = \int_0^{2\pi } {\sqrt {9{{\sin }^2}t + 16{{\sin }^2}t + 25{{\cos }^2}t} } dt \cr & L = \int_0^{2\pi } {\sqrt {25\left( {{{\sin }^2}t + {{\cos }^2}t} \right)} } dt \cr & L = 5\int_0^{2\pi } {dt} \cr & {\text{integrating}} \cr & L = 5\left( {2\pi - 0} \right) \cr & L = 10\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.