Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - Problems Plus - Problems - Page 677: 5

Answer

$$f(x)=\sqrt[n]{x}$$ where $n \geq 1 $

Work Step by Step

$$\int_{0}^{x}f(t)dt=k(f(x))^{n+1}$$ Where $k$ is the factor of proportionality. Differentiate both sides and using the $FTC$ it follows: $$f(x)=k(n+1)(f(x))^{n}f'(x)$$ $$1=k(n+1)(f(x))^{n-1}f'(x)$$ $$1=\left(\frac{k(n+1)}{n}(f(x))^{n}\right)'$$ $$\int1 dx=\int\left(\frac{k(n+1)}{n}(f(x))^{n}\right)'dx$$ $$x+c=\frac{k(n+1)}{n}(f(x))^{n}$$ Since $f(0)=0$ it follows: $$0+c=\frac{k(n+1)}{n}(f(0))^{n} \to c=0$$ so: $$x=\frac{k(n+1)}{n}(f(x))^{n}$$ Since $f(1)=1$ it follows: $$1=\frac{k(n+1)}{n}(f(1))^{n} \to 1=\frac{k(n+1)}{n} $$ so: $$x=1\cdot (f(x))^{n}$$ $$x= (f(x))^{n}$$ $$f(x)=\sqrt[n]{x}$$ where $n \geq 1 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.