Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - Problems Plus - Problems - Page 677: 3

Answer

See the proof.

Work Step by Step

We know that: $$f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$$ $$f'(x)=\lim_{h \to 0}\frac{f(x)f(h)-f(x)}{h}$$ $$f'(x)=f(x)\lim_{h \to 0}\frac{f(h)-1}{h}$$ Since $\displaystyle \lim_{h \to 0}\frac{f(h)-1}{h}=\frac{0}{0}$ because $f(0)=1$ then by the l'Hospital's rule it follows: $$\displaystyle \lim_{h \to 0}\frac{f(h)-1}{h}=\displaystyle \lim_{h \to 0}\frac{f'(h)}{1}=\displaystyle \lim_{h \to 0}f'(h)=f'(0)=1$$ so: $$f'(x)=f(x)\lim_{h \to 0}\frac{f(h)-1}{h} \to f'(x)=f(x)\cdot 1=f(x)$$ --------------------------------------------------------------------- Since: $$f'(x)=f(x)$$ $$\frac{f'(x)}{f(x)}=1$$ $$\int \frac{f'(x)}{f(x)}dx=\int 1dx$$ $$\ln(|f(x)|)=x+c$$ Since $f(0)=1$ then $\ln(|f(0)|)=0+c \to \ln(|1|)=c \to 0=c$ so: $$\ln(|f(x)|)=x+0=x$$ $$\ln(|f(x)|)=x$$ $$|f(x)|=e^{x}$$ $$f(x)=e^{x}~~\text{or}~~f(x)=-e^{x}$$ Since $f(0)=1$ so the solution $f(x)=-e^{x}$ should be discarded because $f(0)=-e^{0}=-1 \neq 1$. so the solution is: $$f(x)=e^{x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.