Answer
$C(t) = \frac{-e^{-kt}}{c'} + \frac{r}{k}$
{where $c'$ = ${kc^{-k}}$}
Work Step by Step
$\frac{dC}{dt} = r-kC$
$\frac{dC}{r-kC} = dt$
$\frac{ln(r-kC(t))}{-k} + lnc= t$
$\ln(r-kC(t)) + ln(c^{-k})= -kt$
$(r-kC(t))(c^{-k}) = e^{-kt}$
$(r-kC(t)) = \frac{e^{-kt}}{c^{-k}}$
$kC(t) = r-\frac{e^{-kt}}{c^{-k}}$
$C(t) = \frac{-e^{-kt}}{c'} + \frac{r}{k}$
{where $c'$ = ${kc^{-k}}$}