Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.3 Separable Equations - 9.3 Exercises - Page 646: 35

Answer

$y=\frac{(x^2+4)^{2}}{4}$

Work Step by Step

Using the $FTC$ it follows: $$y'=2x\sqrt{y}$$ $$\frac{dy}{\sqrt{y}}=2xdx$$ $$\int \frac{dy}{\sqrt{y}}=\int2xdx$$ $$2y^{\frac{1}{2}}=x^2+C$$ For $x=0$, the value of $y=4+0=4$ so: $$2\cdot 4^{\frac{1}{2}}=0^2+C \to C=4$$ so: $$2y^{\frac{1}{2}}=x^2+4$$ $$y^{\frac{1}{2}}=\frac{1}{2}\left(x^2+4\right)$$ $$y=\left(\frac{1}{2}\left(x^2+4\right)\right)^{2}$$ $$y=\frac{(x^2+4)^{2}}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.