Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.3 How Derivatives Affect the Shape of a Graph - 3.3 Exercises - Page 228: 11

Answer

a) $f$ increasing on $(-1,0)\cup(1,\infty)$ $f$ decreasing on $(-\infty,-1)\cup(0,1)$ b) $f(0) = 3$ is a local maximum value and $f(-1) = 2, f(1) = 2$ are local minimum values. c) $f$ is concave upward on $\left(-\infty,-\frac{1}{\sqrt 3}\right)\cup\left(\frac{1}{\sqrt 3},\infty\right)$ $f$ is concave downward on $\left(-\frac{1}{\sqrt 3},\frac{1}{\sqrt 3}\right)$ There are inflection points at $\left(±\frac{1}{\sqrt 3},\frac{22}{9}\right)$

Work Step by Step

a) $f(x) = x^{4}-2x^{2}+3$ $f'(x) = 4x^{3}-4x = 4x(x-1)(x+1)$ $f$ increasing on $(-1,0)\cup(1,\infty)$ $f$ decreasing on $(-\infty,-1\cup(0,1)$ b) $f$ changes from increasing to decreasing at $x = 0$ and from decreasing to increasing at $x = -1, x = 1$. Thus, $f(0) = 3$ is a local maximum value and $f(-1) = 2, f(1) = 2$ are local minimum values. c) $f''(x) = 12x^{2}-4 = 12\left(x-\frac{1}{\sqrt 3}\right)\left(x+\frac{1}{\sqrt 3}\right)$ $f''(x) \gt 0$ for $x \lt -\frac{1}{\sqrt 3}$, $x \gt \frac{1}{\sqrt 3}$ $f''(x) \lt 0$ for $-\frac{1}{\sqrt 3} \lt x \lt \frac{1}{\sqrt 3}$ Thus $f$ is concave upward on $\left(-\infty,-\frac{1}{\sqrt 3}\right)\cup\left(\frac{1}{\sqrt 3},\infty\right)$ $f$ is concave downward on $\left(-\frac{1}{\sqrt 3},\frac{1}{\sqrt 3}\right)$ There are inflection points at $\left(±\frac{1}{\sqrt 3},\frac{22}{9}\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.