Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.1 Derivatives and Rates of Change - 2.1 Exercises - Page 116: 59

Answer

$f^{\prime}(0)$ does not exist.

Work Step by Step

$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \frac{1}{x}-0}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \frac{1}{x}}{x}=\lim _{x \rightarrow 0} \sin \frac{1}{x}$ We are going to show that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist. Consider the function $\sin \frac{1}{x}=g(x) .$ Take an arbitrary $L \in \mathbb{R}$ If $L \neq 1 .$ Take $\epsilon=\frac{|1-L|}{2}$ since $\lim _{y \rightarrow+\infty} \frac{2}{(2 y-1) \pi}=0$ we have that for every $\delta>0$ there exists $A>0$ such that $0A$ Because of what we did above, for each $\delta>0$ we can take an odd number $n_{\delta}>0$ such that $00$ take $x_{\delta}=\frac{2}{\left(2 n_{s}-1\right) \pi}$. We have that $g\left(x_{6}\right)=\sin \frac{1}{x_{6}}=$ $\sin \left(\frac{1}{\frac{2}{\left(2 n_{\delta}-1\right) \pi}}\right)=\sin \left(\frac{\left(2 n_{\delta}-1\right) \pi}{2}\right)=\sin \left(n_{\delta} \pi-\frac{\pi}{2}\right)=1$ So for each $\delta>0$ there exists $x_{6}>0$ such that $0\epsilon$ which gives us that $\lim _{x \rightarrow 0} \sin \frac{1}{x} \neq L$ If $L=1$ take $\epsilon=1$ , do the same as above but instead of taking odd $n_{\delta}^{\prime} s$ take them even. Hence you're gonna have $g\left(x_{8}\right)=-1$ and $\left|g\left(x_{8}\right)-L\right|=$ $|-1-1|=2>\epsilon$, then $\lim _{x \rightarrow 0} \sin \frac{1}{x} \neq 1$ Therefore you have that no $L \in \mathbb{R}$ can be $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ which gives us that $f^{\prime}(0)$ does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.