Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.7 Maximum and Minimum Values - 14.7 Exercises - Page 1008: 29

Answer

Maximum: $f(0.170,-1.215) \approx 3.197$, Minimum: $f(-1.301,0.549) -\approx 3.145$, $f(1.131,0.549) \approx -0.701$ Saddle points at $(-1.301,-1.215),(0.170,0.549),(1.131,-1.215)$ No Highest or Lowest points

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is a not a local minimum and local maximum or, a saddle point. Critical points are: $f(0.170,-1.215),(-1.301,0.549), (1.131,0.549),(-1.301,-1.215),(0.170,0.549),(1.131,-1.215)$ For $(x,y)=f(0.170,-1.215)$ $D \gt 0$ and $f_{xx} \lt 0$ For $(x,y)=(-1.301,0.549)$ $D \gt 0$ and $f_{xx}= \gt 0$ For $(x,y)=(1.131,0.549) $ $D \gt 0$ and $f_{xx}= \gt 0$ Thus, when $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. For $(x,y)=(-1.301,-1.215),(0.170,0.549),(1.131,-1.215)$ $D \lt 0$ ; saddle points. Hence, Maximum: $f(0.170,-1.215) \approx 3.197$, Minimum: $f(-1.301,0.549) -\approx 3.145$, $f(1.131,0.549) \approx -0.701$ Saddle points at $(-1.301,-1.215),(0.170,0.549),(1.131,-1.215)$ No Highest or Lowest points
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.