Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.7 Maximum and Minimum Values - 14.7 Exercises - Page 1008: 24

Answer

Maximum value:$f(\dfrac{1}{\sqrt 2},\dfrac{1}{\sqrt 2})=f(-\dfrac{1}{\sqrt 2},-\dfrac{1}{\sqrt 2})=0$ Minimum value: $f(-\dfrac{1}{\sqrt 2},\dfrac{1}{\sqrt 2})=f(\dfrac{1}{\sqrt 2},-\dfrac{1}{\sqrt 2})=-\dfrac{\sqrt2}{e}$ Saddle point at $(0,0)$

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is a not a local minimum and local maximum or, a saddle point. For $(x,y)=(\dfrac{1}{\sqrt 2},\dfrac{1}{\sqrt 2})$ and $f(-\dfrac{1}{\sqrt 2},-\dfrac{1}{\sqrt 2})$ $D=2e^{-1} \gt 0$ ; and $f_{xx} =-2e^{-1}\lt 0$ $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. For $(x,y)=(\dfrac{1}{\sqrt 2},\dfrac{1}{\sqrt 2})$ and $f(\dfrac{1}{\sqrt 2},-\dfrac{1}{\sqrt 2})$ $D=2e^{-1} \gt 0$ ; and $f_{xx} =2e^{-1}\gt 0$ Thus, when $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. Therefore, we have Maximum value:$f(\dfrac{1}{\sqrt 2},\dfrac{1}{\sqrt 2})=f(-\dfrac{1}{\sqrt 2},-\dfrac{1}{\sqrt 2})=0$ Minimum value: $f(-\dfrac{1}{\sqrt 2},\dfrac{1}{\sqrt 2})=f(\dfrac{1}{\sqrt 2},-\dfrac{1}{\sqrt 2})=-\dfrac{\sqrt2}{e}$ Saddle point at $(0,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.