Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.7 Maximum and Minimum Values - 14.7 Exercises - Page 1007: 3

Answer

Local minimum at $(1,1)$; Saddle point at $(0,0)$

Work Step by Step

Given: $f(x,y)=4+x^3+y^3-3xy$ This gives $f_x(x,y)=3x^2-3y$ and $f_y(x,y)=3y^2-3x$ and $(x,y)=(0,0)$ and $(1,1)$. To solve this problem we will take the help of Second derivative test that suggests the following conditions to determine the local minimum, local maximum and saddle points of $f(x,y)$ or $f(x,y,z)$. i) If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. ii) If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. iii) If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is a not a local minimum and local maximum or, a saddle point. For $(x,y)=(0,0)$, we have $D(0,0)=-9 \lt 0$ and For $(x,y)=(1,1)$, we have $D(1,1)=27 \gt 0$ and $f_{xx}(1,1)=6 \gt 0$ Hence, Local minimum at $(1,1)$; Saddle point at $(0,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.